Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex

Author:

Bottom II R. G.,Borazjani I.,Blevins E. L.,Lauder G. V.

Abstract

Stingrays, in contrast with many other aquatic animals, have flattened disk-shaped bodies with expanded pectoral ‘wings’, which are used for locomotion in water. To discover the key features of stingray locomotion, large-eddy simulations of a self-propelled stingray, modelled closely after the freshwater stingray, Potamotrygon orbignyi, are performed. The stingray’s body motion was prescribed based on three-dimensional experimental measurement of wing and body kinematics in live stingrays at two different swimming speeds of 1.5 and $2.5L~\text{s}^{-1}$ ($L$ is the disk length of the stingray). The swimming speeds predicted by the self-propelled simulations were within 12 % of the nominal swimming speeds in the experiments. It was found that the fast-swimming stingray (Reynolds number $Re=23\,000$ and Strouhal number $St=0.27$) is approximately 12 % more efficient than the slow-swimming one ($Re=13\,500$, $St=0.34$). This is related to the wake of the fast- and slow-swimming stingrays, which was visualized along with the pressure on the stingray’s body. A horseshoe vortex was discovered to be present at the anterior margin of the stingray, creating a low-pressure region that enhances thrust for both fast and slow swimming speeds. Furthermore, it was found that a leading-edge vortex (LEV) on the pectoral disk of swimming stingrays generates a low-pressure region in the fast-swimming stingray, whereas the low- and high-pressure regions in the slow-swimming one are in the back half of the wing and not close to any vortical structures. The undulatory motion creates thrust by accelerating the adjacent fluid (the added-mass mechanism), which is maximized in the back of the wing because of higher undulations and velocities in the back. However, the thrust enhancement by the LEV occurs in the front portion of the wing. By computing the forces on the front half and the back half of the wing, it was found that the contribution of the back half of the wing to thrust in a slow-swimming stingray is several-fold higher than in the fast-swimming one. This indicates that the LEV enhances thrust in fast-swimming stingrays and improves the efficiency of swimming.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3