Semisupervised fault diagnosis of aeroengine based on denoising autoencoder and deep belief network

Author:

Lv Defeng,Wang Huawei,Che Changchang

Abstract

Purpose The purpose of this study is to analyze the intelligent semisupervised fault diagnosis method of aeroengine. Design/methodology/approach A semisupervised fault diagnosis method based on denoising autoencoder (DAE) and deep belief network (DBN) is proposed for aeroengine. Multiple state parameters of aeroengine with long time series are processed to form high-dimensional fault samples and corresponding fault types are taken as sample labels. DAE is applied for unsupervised learning of fault samples, so as to achieve denoised dimension-reduction features. Subsequently, the extracted features and sample labels are put into DBN for supervised learning. Thus, the semisupervised fault diagnosis of aeroengine can be achieved by the combination of unsupervised learning and supervised learning. Findings The JT9D aeroengine data set and simulated aeroengine data set are applied to test the effectiveness of the proposed method. The result shows that the semisupervised fault diagnosis method of aeroengine based on DAE and DBN has great robustness and can maintain high accuracy of fault diagnosis under noise interference. Compared with other traditional models and separate deep learning model, the proposed method also has lower error and higher accuracy of fault diagnosis. Originality/value Multiple state parameters with long time series are processed to form high-dimensional fault samples. As a typical unsupervised learning, DAE is used to denoise the fault samples and extract dimension-reduction features for future deep learning. Based on supervised learning, DBN is applied to process the extracted features and fault diagnosis of aeroengine with multiple state parameters can be achieved through the pretraining and reverse fine-tuning of restricted Boltzmann machines.

Publisher

Emerald

Subject

Aerospace Engineering

Reference20 articles.

1. Nonlinear aeroelastic modeling of aircraft using support vector machine method;Aircraft Engineering and Aerospace Technology,2020

2. Fault fusion diagnosis of aero-engine based on deep learning;Journal of Beijing University of Aeronautics and Astronautics,2018

3. Domain adaptive deep belief network for rolling bearing fault diagnosis;Computers & Industrial Engineering,2020

4. Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing;Measurement,2019

5. A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks;Mechanical Systems and Signal Processing,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3