Nonlinear aeroelastic modeling of aircraft using support vector machine method

Author:

Bagherzadeh Seyed Amin

Abstract

Purpose This paper aims to propose a nonlinear model for aeroelastic aircraft that can predict the flight parameters throughout the investigated flight envelopes. Design/methodology/approach A system identification method based on the support vector machine (SVM) is developed and applied to the nonlinear dynamics of an aeroelastic aircraft. In the proposed non-parametric gray-box method, force and moment coefficients are estimated based on the state variables, flight conditions and control commands. Then, flight parameters are estimated using aircraft equations of motion. Nonlinear system identification is performed using the SVM network by minimizing errors between the calculated and estimated force and moment coefficients. To that end, a least squares algorithm is used as the training rule to optimize the generalization bound given for the regression. Findings The results confirm that the SVM is successful at the aircraft system identification. The precision of the SVM model is preserved when the models are excited by input commands different from the training ones. Also, the generalization of the SVM model is acceptable at non-trained flight conditions within the trained flight conditions. Considering the precision and generalization of the model, the results indicate that the SVM is more successful than the well-known methods such as artificial neural networks. Practical implications In this paper, both the simulated and real flight data of the F/A-18 aircraft are used to provide aeroelastic models for its lateral-directional dynamics. Originality/value This paper proposes a non-parametric system identification method for aeroelastic aircraft based on the SVM method for the first time. Up to the author’s best knowledge, the SVM is not used for the aircraft system identification or the aircraft parameter estimation until now.

Publisher

Emerald

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3