Examining the structure of MPs in the UK-China relationship using speech-word pair bipartite networks

Author:

Hu JimingORCID,Yang ZexianORCID,Wang JiaminORCID,Qian Wei,Feng Cunwan,Lu Wei

Abstract

PurposeThis study proposes a novel method utilising a speech-word pair bipartite network to examine the correlation structure between members of parliament (MPs) in the context of the UK- China relationship.Design/methodology/approachWe construct MP-word pair bipartite networks based on the co-occurrence relationship between MPs and words in their speech content. These networks are then mapped into monopartite MPs correlation networks. Additionally, the study calculates correlation network indicators and identifies MP communities and factions to determine the characteristics of MPs and their interrelation in the UK-China relationship. This includes insights into the distribution of key MPs, their correlation structure and the evolution and development trends of MP factions.FindingsAnalysis of the parliamentary speeches on China-related affairs in the British Parliament from 2011 to 2020 reveals that the distribution and interrelationship of MPs engaged in UK-China affairs are centralised and discrete, with a few core MPs playing an integral role in the UK-China relationship. Among them, MPs such as Lord Ahmad of Wimbledon, David Cameron, Lord Hunt of Chesterton and Lord Howell of Guildford formed factions with significant differences; however, the continuity of their evolution exhibits unstableness. The core MP factions, such as those led by Lord Ahmad of Wimbledon and David Cameron, have achieved a level of maturity and exert significant influence.Research limitations/implicationsThe research has several limitations that warrant acknowledgement. First, we mapped the MP-word pair bipartite network into the MP correlation network for analysis without directly analysing the structure of MPs based on the bipartite network. In future studies, we aim to explore various types of analysis based on the proposed bipartite networks to provide more comprehensive and accurate references for studying UK-China relations. In addition, we seek to incorporate semantic-level analyses, such as sentiment analysis of MPs, into the MP-word -pair bipartite networks for in-depth analysis. Second, the interpretations of MP structures in the UK-China relationship in this study are limited. Consequently, expertise in UK-China relations should be incorporated to enhance the study and provide more practical recommendations.Practical implicationsFirstly, the findings can contribute to an objective understanding of the characteristics and connotations of UK-China relations, thereby informing adjustments of focus accordingly. The identification of the main factions in the UK-China relationship emphasises the imperative for governments to pay greater attention to these MPs’ speeches and social relationships. Secondly, examining the evolution and development of MP factions aids in identifying a country’s diplomatic focus during different periods. This can assist governments in responding promptly to relevant issues and contribute to the formulation of effective foreign policies.Social implicationsFirst, this study expands the research methodology of parliamentary debates analysis in previous studies. To the best of our knowledge, we are the first to study the UK-China relationship through the MP-word-pair bipartite network. This outcome inspires future researchers to apply various knowledge networks in the LIS field to elucidate deeper characteristics and connotations of UK-China relations. Second, this study provides a novel perspective for UK-China relationship analysis, which deepens the research object from keywords to MPs. This finding may offer important implications for researchers to further study the role of MPs in the UK-China relationship.Originality/valueThis study proposes a novel scheme for analysing the correlation structure between MPs based on bipartite networks. This approach offers insights into the development and evolving dynamics of MPs.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3