Double-diffusive convection of a nanofluid in a porous cavity containing rotating hexagon and circular cylinders: ISPH simulations

Author:

Aly Abdelraheem M.,Raizah Zehba

Abstract

Purpose The purpose of this study is to apply an incompressible smoothed particle hydrodynamics (ISPH) method to simulate the Magnetohydrodynamic (MHD) free convection flow of a nanofluid in a porous cavity containing rotating hexagonal and two circular cylinders under the impacts of Soret and Dufour numbers. Design/methodology/approach The inner shapes are rotating around a cavity center by a uniform circular motion at angular rate ω. An inner hexagonal shape has higher temperature Th and concentration Ch than the inner two circular cylinders in which the temperature is Tc and concentration is Cc. The performed numerical simulations are presented in terms of the streamlines, isotherms and isoconcentration as well as the profiles of average Nusselt and Sherwood numbers. Findings The results indicated that the uniform motions of inner shapes are changing the characteristics of the fluid flow, temperature and concentration inside a cavity. An augmentation on a Hartman parameter slows down the flow speed and an inclination angle of a magnetic field raises the flow speed. A rise in the Soret number accompanied by a reduction in the Dufour number lead to a growth in the concentration distribution in a cavity. Originality/value ISPH method is used to simulate the double-diffusive convection of novel rotating shapes in a porous cavity. The inner novel shapes are rotating hexagonal and two circular cylinders.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3