Computational fluid dynamics for thermal performance of a water-cooled minichannel heat sink with different chip arrangements

Author:

Xie Gongnan,Li Shian,Sunden Bengt,Zhang Weihong

Abstract

Purpose – With the development of electronic devices, including the desires of integration, miniaturization, high performance and the output power, cooling requirement of chips have been increased gradually. Water-cooled minichannel is an effective cooling technology for cooling of heat sinks. The minichannel flow geometry offers large surface area for heat transfer and a high convective heat transfer coefficient with only a moderate pressure loss. The purpose of this paper is to analyze a minichannel heat sink having the bottom size of 35 mm×35 mm numerically. Two kinds of chip arrangement are investigated: diagonal arrangement and parallel arrangement. Design/methodology/approach – Computational fluid dynamics (CFD) technique is used to investigate the flow and thermal fields in forced convection in a three-dimensional minichannels heat sink with different chip arrangements. The standard k-e turbulence model is applied for the turbulence simulations on the minichannel heat sink. Findings – The results show that the bottom surface of the heat sink with various chip arrangements will have different temperature distribution and thermal resistance. A suitable chip arrangement will achieve a good cooling performance for electronic devices. Research limitations/implications – The fluid is incompressible and the thermophysical properties are constant. Practical implications – New and additional data will be helpful as guidelines in the design of heat sinks to achieve a good thermal performance and a long lifetime in operation. Originality/value – In real engineering situations, chips are always placed in various manners according to design conditions and constraints. In this case the assumption of uniform heat flux is acceptable for the surfaces of the chips rather than for the entire bottom surface of the heat sink.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3