Intermetallic growth kinetics in gold ball bonds on Al-1%Si-0.5%Cu bond pads at 175∘C

Author:

Breach Christopher

Abstract

Purpose The purpose of this study is to demonstrate that isothermal intermetallic growth data for gold ball bonds can be non-parabolic with explanations of why deviation from parabolic kinetics may occur. Design/methodology/approach Intermetallic thickness measurements were made at the centre of cross-sectioned ball bonds that were isothermally annealed at 175°C. Intermetallic growth kinetics were modelled with a power law expression(x(t) − x0)2 = α1tα2. The parameters of the power law model were obtained by transformation of the response and explanatory variables followed by data fitting using simple linear regression (SLR). Findings Ball bonds made with 4 N (99.99%Au) and 3 N (99.9%Au) gold wires exhibited two consecutive time regimes of intermetallic growth denoted Regime I and Regime II. Regime I was characterised by reactive diffusion between the gold wire and the aluminium alloy bond pad, during which Al was completely consumed in the formation of Au–Al intermetallics with non-parabolic kinetics. In Regime II, the absence of a free supply of Al to sustain intermetallic growth led to the conclusion that thickening of intermetallics was caused by phase transformation of Au8Al3 to Au4Al. Ball bonds made with 2 N (99%Au) wire also exhibited non-parabolic kinetics in Regime I and negligible intermetallic thickening in Regime II. Research limitations/implications The analysis of intermetallic growth is limited to total intermetallic growth at a single temperature (175°C). Originality/value The value of this study lies in showing that the assumption that only parabolic intermetallic growth is observed in isothermally aged gold ball bonds is incorrect. Furthermore there is no need to assume parabolic growth kinetics because with an appropriate data transformation, followed by fitting the data to a power law model using SLR and with the use of statistical diagnostics, both the suitability of the kinetic model and the nature of the growth kinetics (parabolic or non-parabolic) can be determined.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference38 articles.

1. Intermetallic growth kinetics of 2N gold wire ball bonds on aluminium bond pads annealed at 175∘C;Gold Bulletin,2016

2. Breach, C.D. (2016b), “Simple linear regression with R/RStudio for absolute R beginners”, available at: www.lulu.com/spotlight/cbreach.

3. New observations on intermetallic compound formation in gold ball bonds: general growth patterns and identification of two forms of Au4Al;Microelectronics Reliability,2004

4. Reliability and failure analysis of gold ball bonds in fine and ultra-fine pitch applications,2004

5. The effect of Pd and Cu in the intermetallic growth of alloy Au wire;Journal of Electronic Materials,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3