Mechanical assembly assistance using marker-less augmented reality system

Author:

Wang Yue,Zhang Shusheng,Yang Sen,He Weiping,Bai Xiaoliang

Abstract

Purpose This paper aims to propose a real-time augmented reality (AR)-based assembly assistance system using a coarse-to-fine marker-less tracking strategy. The system automatically adapts to tracking requirement when the topological structure of the assembly changes after each assembly step. Design/methodology/approach The prototype system’s process can be divided into two stages: the offline preparation stage and online execution stage. In the offline preparation stage, planning results (assembly sequence, parts position, rotation, etc.) and image features [gradient and oriented FAST and rotated BRIEF (ORB)features] are extracted automatically from the assembly planning process. In the online execution stage, too, image features are extracted and matched with those generated offline to compute the camera pose, and planning results stored in XML files are parsed to generate the assembly instructions for manipulators. In the prototype system, the working range of template matching algorithm, LINE-MOD, is first extended by using depth information; then, a fast and robust marker-less tracker that combines the modified LINE-MOD algorithm and ORB tracker is designed to update the camera pose continuously. Furthermore, to track the camera pose stably, a tracking strategy according to the characteristic of assembly is presented herein. Findings The tracking accuracy and time of the proposed marker-less tracking approach were evaluated, and the results showed that the tracking method could run at 30 fps and the position and pose tracking accuracy was slightly superior to ARToolKit. Originality/value The main contributions of this work are as follows: First, the authors present a coarse-to-fine marker-less tracking method that uses modified state-of-the-art template matching algorithm, LINE-MOD, to find the coarse camera pose. Then, a feature point tracker ORB is activated to calculate the accurate camera pose. The whole tracking pipeline needs, on average, 24.35 ms for each frame, which can satisfy the real-time requirement for AR assembly. On basis of this algorithm, the authors present a generic tracking strategy according to the characteristics of the assembly and develop a generic AR-based assembly assistance platform. Second, the authors present a feature point mismatch-eliminating rule based on the orientation vector. By obtaining stable matching feature points, the proposed system can achieve accurate tracking results. The evaluation of the camera position and pose tracking accuracy result show that the study’s method is slightly superior to ARToolKit markers.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference45 articles.

1. Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit,2004

2. Providing guidance for maintenance operations using automatic markerless augmented reality system;Virtual Reality,2011

3. A survey of augmented reality;Presence: Teleoperators and Virtual Environments,1997

4. Decision support for sequence generation in an assembly oriented design environment;Robotics and Computer-Integrated Manufacturing,2004

5. SURF: speeded up robust features,2006

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3