A Robust AR-DSNet Tracking Registration Method in Complex Scenarios

Author:

Lei Xiaomei12,Lu Wenhuan1,Yong Jiu13ORCID,Wei Jianguo1ORCID

Affiliation:

1. College of Intelligence and Computing, Tianjin University, Tianjin 300072, China

2. Gansu Meteorological Information and Technical Equipment Support Center, Gansu Meteorological Bureau, Lanzhou 730020, China

3. School of Electronic and Information Engineering, Lanzhou Jiaotong Univeristy, Lanzhou 730070, China

Abstract

A robust AR-DSNet (Augmented Reality method based on DSST and SiamFC networks) tracking registration method in complex scenarios is proposed to improve the ability of AR (Augmented Reality) tracking registration to distinguish target foreground and semantic interference background, and to address the issue of registration failure caused by similar target drift when obtaining scale information based on predicted target positions. Firstly, the pre-trained network in SiamFC (Siamese Fully-Convolutional) is utilized to obtain the response map of a larger search area and set a threshold to filter out the initial possible positions of the target; Then, combining the advantage of the DSST (Discriminative Scale Space Tracking) filter tracker to update the template online, a new scale filter is trained after collecting multi-scale images at the initial possible position of target to reason the target scale change. And linear interpolation is used to update the correlation coefficient to determine the final position of target tracking based on the difference between two frames. Finally, ORB (Oriented FAST and Rotated BRIEF) feature detection and matching are performed on the accurate target position image, and the registration matrix is calculated through matching relationships to overlay the virtual model onto the real scene, achieving enhancement of the real world. Simulation experiments show that in complex scenarios such as similar interference, target occlusion, and local deformation, the proposed AR-DSNet method can complete the registration of the target in AR 3D tracking, ensuring real-time performance while improving the robustness of the AR tracking registration algorithm.

Funder

National Natural Science Foundation of China

Ministry of Education of China

Natural Science Foundation of Gansu Province

Youth Science and Technology Talent Innovation Project of Lanzhou

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3