“Trust us,” they said. Mapping the contours of trustworthiness in learning analytics

Author:

Slade Sharon,Prinsloo Paul,Khalil Mohammad

Abstract

Purpose The purpose of this paper is to explore and establish the contours of trust in learning analytics and to establish steps that institutions might take to address the “trust deficit” in learning analytics. Design/methodology/approach “Trust” has always been part and parcel of learning analytics research and practice, but concerns around privacy, bias, the increasing reach of learning analytics, the “black box” of artificial intelligence and the commercialization of teaching and learning suggest that we should not take stakeholder trust for granted. While there have been attempts to explore and map students’ and staff perceptions of trust, there is no agreement on the contours of trust. Thirty-one experts in learning analytics research participated in a qualitative Delphi study. Findings This study achieved agreement on a working definition of trust in learning analytics, and on factors that impact on trusting data, trusting institutional understandings of student success and the design and implementation of learning analytics. In addition, it identifies those factors that might increase levels of trust in learning analytics for students, faculty and broader. Research limitations/implications The study is based on expert opinions as such there is a limitation of how much it is of a true consensus. Originality/value Trust cannot be assumed is taken for granted. This study is original because it establishes a number of concerns around the trustworthiness of learning analytics in respect of how data and student learning journeys are understood, and how institutions can address the “trust deficit” in learning analytics.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Education

Reference48 articles.

1. Linking ontology, epistemology and research methodology;Science and Philosophy,2020

2. Speaking the unspoken in learning analytics: troubling the defaults;Assessment and Evaluation in Higher Education,2020

3. A predictive analytics infrastructure to support a trustworthy early warning system;Applied Sciences,2021

4. Barnes, J.L. (1987), “An international study of curricular organizers for the study of technology”, Unpublished doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VT, available at: https://vtechworks.lib.vt.edu/handle/10919/37284

5. Two different invitation approaches for consecutive rounds of a Delphi survey led to comparable final outcome;Journal of Clinical Epidemiology,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3