Machine learning framework for predicting reliability of solder joints

Author:

Yi Sung,Jones Robert

Abstract

Purpose This paper aims to present a machine learning framework for using big data analytics to predict the reliability of solder joints. The purpose of this study is to accurately predict the reliability of solder joints by using big data analytics. Design/methodology/approach A machine learning framework for using big data analytics is proposed to predict the reliability of solder joints accurately. Findings A machine learning framework for predicting the life of solder joints accurately has been developed in this study. To validate its accuracy and efficiency, it is applied to predict the long-term reliability of lead-free Sn96.5Ag3.0Cu0.5 (SAC305) for three commonly used surface finishes such OSP, ENIG and IAg. The obtained results show that the predicted failure based on the machine learning method is much more accurate than the Weibull method. In addition, solder ball/bump joint failure modes are identified based on various solder joint failures reported in the literature. Originality/value The ability to predict thermal fatigue life accurately is extremely valuable to the industry because it saves time and cost for product development and optimization.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference48 articles.

1. Thermal cycling of lead-free sn-3.8 ag-0.7 cu 388pbga packages;Soldering & Surface Mount Technology,2009

2. Reliability and failure mechanism of solder joints in thermal cycling tests,2013

3. Effects of process conditions on reliability, microstructure evolution and failure modes of snagcu solder joints;Microelectronics Reliability,2006

4. Coupling damage and reliability modeling for creep and fatigue of solder joint;Microelectronics Reliability,2017

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3