Simulation of charring depth of timber structures when exposed to non-standard fire curves

Author:

Mindeguia Jean-Christophe,Cueff Guillaume,Dréan Virginie,Auguin Gildas

Abstract

Purpose The fire resistance of wooden structures is commonly based on the calculation or measurement of the char layer. Designers usually estimate the char layer at the surface of a structural element by using analytical models. Some of these charring models can be found in regulations, as Eurocode 5. These analytical models, quite simple to use, are only reliable for the standard fire curve. In that case, the design of the structure is qualified as “prescriptive-based design” and can lead to oversizing the structure. Optimization of a structure can be achieved by using a “Performance-based design”, where realistic fire scenarios are taken into account by means of more or less complex models [parametric fires, two-zones models, computational fluid dynamics (CFD)]. For these so-called “natural fires”, no model for charring is available. The purpose of this paper is to present a novel methodology for applying a performance-based design to a simple timber structure. Design/methodology/approach This paper presents the development of a numerical model aiming to simulate the thermal transfer and charring in wood, under any type of thermal exposure, including non-standard fire curves. After presenting the physical background, the model is calibrated and compared to existing experimental studies on wood samples exposed to different fire curves. The model is then used as a tool for assessing the fire resistance of a common wooden structure exposed to standard and non-standard fire curves. Findings The results show that the fire resistance is obviously dependent on the choice of the thermal exposure. The reliability of the model is also discussed and the importance of taking into account particular reactions in wood during heating is underlined. Originality/value One aim of this paper is to show the opportunity to apply a performance-based approach when designing a wooden structure. It shows that more knowledge of the material behaviour under non-standard fires is still needed, especially during the decay phase.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference17 articles.

1. Bal, N. (2012), “Uncertainty and complexity in pyrolysis modelling”, PhD thesis, University of Edinburgh.

2. Analysis of cross-laminated timber charring rates upon exposure to non-standard heating condition,2015

3. A tool to design steel elements submitted to compartment fires—OZone V2. Part 1: pre- and post-flashover compartment fire model;Fire Safety Journal,2003

4. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels;Journal of Analytical and Applied Pyrolysis,1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3