A 2-tuple integrated DEA-based approach for neuromarketing technology evaluation

Author:

Dursun Mehtap,Goker Nazli

Abstract

Purpose Neuromarketing, which is an interdisciplinary area, concentrates on evaluating consumers’ cognitive and emotional reactions to different marketing stimuli. In spite of advantages, neuromarketing still requires development and lacks a strong theoretical framework. Techniques that are used in neuromarketing studies have different superiorities and limitations, and thus, there is a need for the evaluation of the relevance of these techniques. The purpose of this study is to introduce a novel integrated approach for the neuromarketing research area. Design/methodology/approach The proposed approach combines 2-tuple linguistic representation model and data envelopment analysis to obtain the most efficient neuromarketing technique. It is apt to handle information provided by using both linguistic and numerical scales with multiple information sources. Furthermore, it allows managers to deal with heterogeneous information, without loss of information. Findings The proposed approach indicates that functional magnetic resonance imaging (fMRI) is the best performing neuromarketing technology. Recently, fMRI has been widely used in neuromarketing research. In spite of its high cost, its main superiorities are improved spatial and temporal resolutions. On the other hand, transcranial magnetic stimulation (TMS) and positron emission tomography (PET) are ranked at the bottom because of their poor resolutions and lower willingness of participants. Originality/value This paper proposes a common weight data envelopment analysis (DEA)-based decision model to cope with heterogeneous information collected by the experts to determine the best performing neuromarketing technology. The decision procedure enables the decision-makers to handle the problems of loss of information and multi-granularity by using the fusion of 2-tuple linguistic representation model and fuzzy information. Moreover, a DEA-based common weight model does not require subjective experts’ opinions to weight the evaluation criteria.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference38 articles.

1. Neuromarketing: the hope and hype of neuroimaging in business;Nature Reviews. Neuroscience,2010

2. A new fuzzy additive model for determining the common set of weights in data envelopment analysis;Journal of Intelligent & Fuzzy Systems,2016

3. Analytical approach to neuromarketing as a business strategy;Procedia – Social and Behavioral Sciences,2013

4. Measuring the efficiency of decision-making units;European Journal of Operational Research,1978

5. Construction of intuitionistic fuzzy cognitive maps for target marketing strategy decisions;Advances in Intelligent Systems and Computing,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3