Multi-scale thermal modeling of glass interposer for mobile electronics application

Author:

Cho Sangbeom,Sundaram Venky,Tummala Rao,Joshi Yogendra

Abstract

Purpose – The functionality of personal mobile electronics continues to increase, in turn driving the demand for higher logic-to-memory bandwidth. However, the number of inputs/outputs supported by the current packaging technology is limited by the smallest achievable electrical line spacing, and the associated noise performance. Also, a growing trend in mobile systems is for the memory chips to be stacked to address the growing demand for memory bandwidth, which in turn gives rise to heat removal challenges. The glass interposer substrate is a promising packaging technology to address these emerging demands, because of its many advantages over the traditional organic substrate technology. However, glass has a fundamental limitation, namely low thermal conductivity (∼1 W/m K). The purpose of this paper is to quantify the thermal performance of glass interposer-based electronic packages by solving a multi-scale heat transfer problem for an interposer structure. Also, this paper studies the possible improvement in thermal performance by integrating a fluidic heat spreader or vapor chamber within the interposer. Design/methodology/approach – This paper illustrates the multi-scale modeling approach applied for different components of the interposer, including Through Package Vias (TPVs) and copper traces. For geometrically intricate and repeating structures, such as interconnects and TPVs, the unit cell effective thermal conductivity approach was used. For non-repeating patterns, such as copper traces in redistribution layer, CAD drawing-based thermal resistance network analysis was used. At the end, the thermal performance of vapor chamber integrated within a glass interposer was estimated by using an enhanced effective thermal conductivity, calculated from the published thermal resistance data, in conjunction with the analytical expression for thermal resistance for a given geometry of the vapor chamber. Findings – The limitations arising from the low thermal conductivity of glass can be addressed by using copper structures and vapor chamber technology. Originality/value – A few reports can be found on thermal performance of glass interposers. However thermal characteristics of glass interposer with advanced cooling technology have not been reported.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurements of Thermal Resistance Across Buried Interfaces with Frequency-Domain Thermoreflectance and Microscale Confinement;ACS Applied Materials & Interfaces;2024-07-24

2. Heterogeneous Integration of Diamond-on-Chip-on-Glass Interposer for Efficient Thermal Management;IEEE Electron Device Letters;2024-03

3. Thermal Performance of 2.5D Packaging with the Through Glass Via (TGV) Interposer;2023 24th International Conference on Electronic Packaging Technology (ICEPT);2023-08-08

4. Thermal and mechanical design of reverting microchannels for cooling disk-shaped electronic parts using constructal theory;International Journal of Numerical Methods for Heat & Fluid Flow;2019-10-05

5. Gravitational effects on electroosmotic flow in micro heat pipes;International Journal of Numerical Methods for Heat & Fluid Flow;2019-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3