An efficient positioning solution in urban canyons using enhanced extended Kalman particle filter

Author:

Xu Qimin,Jiang Rong

Abstract

Purpose This paper aims to propose a 3D-map aided tightly coupled positioning solution for land vehicles to reduce the errors caused by non-line-of-sight (NLOS) and multipath interference in urban canyons. Design/methodology/approach First, a simple but efficient 3D-map is created by adding the building height information to the existing 2D-map. Then, through a designed effective satellite selection method, the distinct NLOS pseudo-range measurements can be excluded. Further, an enhanced extended Kalman particle filter algorithm is proposed to fuse the information from dual-constellation Global Navigation Satellite Systems and reduced inertial sensor system. The dependable degree of each selected satellite is adjusted through fuzzy logic to further mitigate the effect of misjudged LOS and multipath. Findings The proposed solution can improve positioning accuracy in urban canyons. The experimental results evaluate the effectiveness of the proposed solution and indicate that the proposed solution outperforms all the compared counterparts. Originality/value The effect of NLOS and multipath is addressed from both the observation level and fusion level. To the authors’ knowledge, mitigating the effect of misjudged LOS and multipath in the fusion algorithm of tightly coupled integration is seldom considered in existing literature.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference23 articles.

1. Applying standard digital map data in map-aided, lane-level GNSS location;Journal of Navigation,2015

2. A new modeling based on urban trenches to improve GNSS positioning quality of service in cities;IEEE Intelligent Transportation Systems Magazine,2013

3. NLOS identification and mitigation for geolocation using least-squares support vector machines,2017

4. Real-time global localization of robotic cars in lane level via lane marking detection and shape registration;IEEE Transactions on Intelligent Transportation Systems,2016

5. Low-cost three-dimensional navigation solution for RISS/GPS integration using mixture particle filter;IEEE Transactions on Vehicular Technology,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Energy-Efficient Smartphone Positioning Scheme by Fusing WiFi, GPS and PDR;2023 19th International Conference on Mobility, Sensing and Networking (MSN);2023-12-14

2. Enhanced Map-Aided GPS/3D RISS Combined Positioning Strategy in Urban Canyons;Mathematical Problems in Engineering;2022-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3