Affiliation:
1. School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
2. Research Institute of Highway Ministry of Transport, Beijing 100088, China
3. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
Abstract
To realize the effective positioning in urban canyons, an enhanced map-aided Global Positioning System (GPS)/three-dimensional (3D) reduced inertial sensor system (RISS) tightly combined positioning strategy is proposed. First, the 3D RISS is only based on the built-in controller area network (CAN). CAN bus sensor without additional sensors is first constructed to lower the cost. Then, a simple but effective enhanced map is created to assist positioning. Based on the map, a Kalman filtering (KF) tightly coupled method is proposed to fuse the 3D RISS with GPS information and to achieve the preliminary positioning. In KF-based preliminary positioning method, a simply observation noise variance optimization algorithm based on 2D enhanced map is proposed to improve KF method. In this algorithm, the value of the observation noise variance matrix is determined only according to the building plane information which is contained in the enhanced map. Further, a multiweight map matching algorithm is proposed for optimizing the initial positioning results. In this algorithm, factors such as distance, direction, road network topology, and lane change are considered and applied to map matching to further increase the positioning performance and form the final positioning results. Finally, the effectiveness of the strategy is proved by field test. The results show that this method has better accuracy and reliability than the conventional method.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献