Associated probabilities aggregations in multistage investment decision-making

Author:

Sirbiladze GiaORCID,Garg HarishORCID,Khutsishvili IrinaORCID,Ghvaberidze BezhanORCID,Midodashvili BidzinaORCID

Abstract

PurposeThe attributes that influence the selection of applicants and the relevant crediting decisions are naturally distinguished by interactions and interdependencies. A new method of possibilistic discrimination analysis (MPDA) was developed for the second stage to address this phenomenon. The method generates positive and negative discrimination measures for each alternative applicant in relation to a particular attribute. The obtained discrimination pair reflects the interaction of attributes and represents intuitionistic fuzzy numbers (IFNs). For the aggregation of applicant's discrimination intuitionistic fuzzy assessments (with respect to attributes), new intuitionistic aggregation operators, such as AsP-IFOWA and AsP-IFOWG, are defined and studied. The new operators are certain extensions of the well-known Choquet integral and Yager OWA operators. The extensions, in contrast to the Choquet aggregation, take into account all possible interactions of the attributes by introducing associated probabilities of a fuzzy measure.Design/methodology/approachFor optimal planning of investments distribution and decreasing of credit risks, it is crucial to have selected projects ranked within deeply detailed investment model. To achieve this, a new approach developed in this article involves three stages. The first stage is to reduce a possibly large number of applicants for credit, and here, the method of expertons is used. At the second stage, a model of improved decisions is built, which reduces the risks of decision making. In this model, as it is in multi-attribute decision-making (MADM) + multi-objective decision-making (MODM), expert evaluations are presented in terms of utility, gain, and more. At the third stage, the authors construct the bi-criteria discrete intuitionistic fuzzy optimization problem for making the most profitable investment portfolio with new criterion: 1) Maximization of total ranking index of selected applicants' group and classical criterion and 2) Maximization of total profit of selected applicants' group.FindingsThe example gives the Pareto fronts obtained by both new operators, the Choquet integral and Yager OWA operators also well-known TOPSIS approach, for selecting applicants and awarding credits. For a fuzzy measure, the possibility measure defined on the expert evaluations of attributes is taken.Originality/valueThe comparative analysis identifies the applicants who will receive the funding sequentially based on crediting resources and their requirements. It has become apparent that the use of the new criterion has given more credibility to applicants in making optimal credit decisions in the environment of extended new operators, where the phenomenon of interaction of all attributes was also taken into account.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3