Adaptive motion planning framework by learning from demonstration

Author:

Li Xiao,Cheng Hongtai,Liang Xiaoxiao

Abstract

Purpose Learning from demonstration (LfD) provides an intuitive way for non-expert persons to teach robots new skills. However, the learned motion is typically fixed for a given scenario, which brings serious adaptiveness problem for robots operating in the unstructured environment, such as avoiding an obstacle which is not presented during original demonstrations. Therefore, the robot should be able to learn and execute new behaviors to accommodate the changing environment. To achieve this goal, this paper aims to propose an improved LfD method which is enhanced by an adaptive motion planning technique. Design/methodology/approach The LfD is based on GMM/GMR method, which can transform original off-line demonstrations into a compressed probabilistic model and recover robot motion based on the distributions. The central idea of this paper is to reshape the probabilistic model according to on-line observation, which is realized by the process of re-sampling, data partition, data reorganization and motion re-planning. The re-planned motions are not unique. A criterion is proposed to evaluate the fitness of each motion and optimize among the candidates. Findings The proposed method is implemented in a robotic rope disentangling task. The results show that the robot is able to complete its task while avoiding randomly distributed obstacles and thereby verify the effectiveness of the proposed method. The main contributions of the proposed method are avoiding unforeseen obstacles in the unstructured environment and maintaining crucial aspects of the motion which guarantee to accomplish a skill/task successfully. Originality/value Traditional methods are intrinsically based on motion planning technique and treat the off-line training data as a priori probability. The paper proposes a novel data-driven solution to achieve motion planning for LfD. When the environment changes, the off-line training data are revised according to external constraints and reorganized to generate new motion. Compared to traditional methods, the novel data-driven solution is concise and efficient.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference43 articles.

1. A global hypotheses verification method for 3d object recognition,2012

2. A survey of robot learning from demonstration;Robotics & Autonomous Systems,2009

3. Towards robust skill generalization: unifying learning from demonstration and motion planning,2017

4. B.Rusu, R. (2012), “Cylinder model segmentation”, available at: http://pointclouds.org/documentation/tutorials/cylinder_segmentation.php#cylinder-segmentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3