Predicting Scooping and Skipping in Solder Paste Printing for Reflow Soldering of SMT Devices

Author:

Mannan S.H.,Ekere N.N.,Lo E.K.,Ismail I.

Abstract

This paper examines the rôle that the squeegee plays in the solder paste printing process. Although the printing of solder paste is only one stage of many in the surface mount assembly process, it is crucial to deposit the correct amounts of solder paste cleanly onto the substrate. The amount of solder paste deposited affects the reliability and strength of the reflowed solder joint. Surface mount component lead pitches are continually being reduced due to the requirements of packing more and more components into a given space on the PCB, and this necessitates a proper understanding of the printing process and in particular of the squeegee which plays an important part in determining paste heights and the occurrence of defects. The paper outlines a model which predicts scooping and skipping in the stencil printing of solder pastes used in the reflow soldering of surface mounted devices. The model is based on the forces acting on the squeegee blade, which determines the paste flow pattern ahead of the squeegee, and on the stencil aperture geometry. The paper also examines the interactions between the paste properties and squeegee material properties. These interactions produce printing defects such as scooping, skipping and wet bridging. Results of an experimental comparison of different types of squeegee blade used in the stencil printing of solder pastes for reflow soldering in SMT, as well as the experimental results for squeegee deformation into stencil apertures, were used for validating the model. The empirically enhanced model which results takes into account the force on the squeegee due to solder paste flow and some of the non‐Newtonian properties of the solder paste. The main utility of the proposed model is the control of solder paste printing quality.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3