Specific energy absorption during compression testing of ABS and FPU parts fabricated using LCD-SLA based 3D printer

Author:

Dave Harshit K.,Karumuri Ravi Teja,Prajapati Ashish R.,Rajpurohit Shilpesh R.

Abstract

Purpose Liquid crystal display (LCD)-based stereolithography (SLA) technique has been used in drug delivery and fabrication of microfluidic devices and piezoelectric materials. It is an additive manufacturing technique where an LCD source has been used as a mask to project the image onto the tank filled with photo curable resin. This resin, when interacted with light, becomes solid. However, critical information regarding the energy absorption during the compression analysis of different components three-dimensional (3D) printed by SLA process is still limited. Therefore, this study aims to investigate the effect of different process parameters on the compressive properties. Design/methodology/approach In the present study, the influence of layer thickness, infill density and build orientation on the compression properties is investigated. Four infill densities, that is, 20%, 40%, 60% and 80%; five-layer thicknesses, that is, 50 µm, 75 µm, 100 µm, 150 µm and 200 µm; and two different orientations, that is, YXZ and ZXY, have been selected for this study. Findings It is observed that the samples printed with acrylonitrile butadiene styrene (ABS) absorbed higher energy than the flexible polyurethane (FPU). Higher infill density and sample oriented on ZXY absorbed higher energy than sample printed on YXZ orientation, in both the ABS and FPU materials. Parts printed with 80% infill density and 200 µm layer thickness resulted into maximum energy for both the materials. Originality/value In this study, two different types of materials are used for the compression analysis using LCD-SLA-based 3D printer. Specific energy absorbed by the samples during compression testing is measured to compare the influence of parameters. The investigation of infill parameters particularly the infill density is very limited for the SLA-based 3D printing process. Also, the results of this study provide a database to select the print parameters to obtain the required properties. The results also compare the specific energy for hard and flexible material for the same combination of the process parameters.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference33 articles.

1. Influence of manufacturing parameters on the mechanical properties of projection stereolithography–manufactured specimens;The International Journal of Advanced Manufacturing Technology,2020

2. Microstereophotolithography using a liquid crystal display as dynamic mask-generator;Microsystem Technologies,1997

3. Influence of layer thickness on mechanical properties in stereolithography;Rapid Prototyping Journal,2006

4. Cheap, versatile, and turnkey fabrication of microfluidic master molds using consumer-grade LCD stereolithography 3D printing;The International Journal of Advanced Manufacturing Technology,2021

5. Compressive strength of PLA based scaffolds: effect of layer height, infill density and print speed,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3