Measured accuracy improvement method of velocity and displacement based on adaptive Kalman filter

Author:

Xu Xiaobin,Luo Minzhou,Tan Zhiying,Zhang Min,Yang Hao

Abstract

Purpose This paper aims to investigate the effect of unknown noise parameters of Kalman filter on velocity and displacement and to enhance the measured accuracy using adaptive Kalman filter with particle swarm optimization algorithm. Design/methodology/approach A novel method based on adaptive Kalman filter is proposed. Combined with the displacement measurement model, the standard Kalman filtering algorithm is established. The particle swarm optimization algorithm fused with Kalman is used to obtain the optimal noise parameter estimation using different fitness function. Findings The simulations and experimental results show that the adaptive Kalman filter algorithm fused with particle swarm optimization can improve the accuracy of the velocity and displacement. Originality/value The adaptive Kalman filter algorithm fused with particle swarm optimization can serve as a new method for optimal state estimation of moving target.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex lane detection based on dynamic constraint of the double threshold;Multimedia Tools and Applications;2021-05-13

2. Grinding trajectory generation of hybrid robot based on Cartesian direct teaching technology;Industrial Robot: the international journal of robotics research and application;2020-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3