Improvement of lubrication performance of water lubricated polymer bearing via enlarged axial end bearing diameter

Author:

Lv Fangrui,Zou Donglin,Ta Na,Rao Zhu-Shi

Abstract

Purpose The purpose of this paper is to improve the lubrication performance of a water-lubricated polymer bearing with axial grooves, especially enlarge the minimum film thickness. Design/methodology/approach The bearing diameter is enlarged near the axial ends of the journal, with axial openings of a trumpet shape. A numerical model is developed which considers the proposed trumpet-shaped openings, bush deformation and grooves. The generatrix of the trumpet-shaped opening is assumed to be a paraboloid. Three different variations are covered, and the influences of the trumpet-shaped openings’ parameters on the bearing performance are analyzed. Findings The appropriate trumpet-shaped openings at the axial ends effectively increase the minimum film thickness, and the impact of trumpet-shaped openings on load carrying capacity is very small or even negligible. For the water-lubricated polymer bearing with axial grooves analyzed in this paper, the appropriate trumpet-shaped openings increase the minimum film thickness from 0.53 to 11.14 µm and decrease the load carrying capacity by 2.48 per cent. Practical implications The results of this study can be applied to marine propeller shaft systems and other systems with polymer bearings. Originality/value This paper has presented an approach for significantly increasing the minimum film thickness of a water-lubricated polymer bearing. A study on the performance improvement of water-lubricated polymer bearings with axial grooves is of significant interest to the research community.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3