Understanding and visualizing schedule deviations in construction projects using fault tree analysis

Author:

Hsu Pei-Yuan,Aurisicchio Marco,Angeloudis Panagiotis,Whyte Jennifer

Abstract

PurposeDelays in construction projects are both disruptive and expensive. Thus, potential causes of schedule deviation need to be identified and mitigated. In previous research, delay factors were predominantly identified through surveys administered to stakeholders in construction projects. Such delay factors are typically considered individually and presented at the same level without explicitly examining their sequence of occurrence and inter-relationships. In reality, owing to the complex structure of construction projects and long execution time, non-conformance to schedule occurs by a chain of cascading events. An understanding of these linkages is important not only for minimising the delays but also for revealing the liability of stakeholders. To explicitly illustrate the cause–effect and logical relationship between delay factors and further identify the primary factors which possess the highest significance toward the overall project schedule delay, the fault tree analysis (FTA) method, a widely implemented approach to root cause problems in safety-critical systems, has been systematically and rigorously executed.Design/methodology/approachUsing a case study, the in-depth analysis for identifying the most fundamental delay factors has been fulfilled through FTA's tree structure. The logical deduction for mapping and visualising the chronological and cause–effect relationships between various delay factors has been conducted through the logical gate functions of FTA based on the data collected from the site event log, pre-fabricated structural component manufacturing log and face-to-face interview with project stakeholders.FindingsThe analysis identified multiple delay factors and showed how they are linked logically and chronologically from the primary causes to the ultimate undesired event in a rigorous manner. A comparison was performed between the proposed FTA model and the conventional investigation method for revealing the responsibility employed in the construction industry, consisting of event logs and problem reports. The results indicate that the FTA model provides richer information and a clearer picture of the network of delay factors. Importantly, the ability of FTA in revealing the causal connection between the events leading to the undesired delays and in comprehending their prominence in the real-world construction project has been clearly displayed.Originality/ valueThis study demonstrates a new application of FTA in the construction sector allowing the delay factors to be understood and visualised from a new perspective. The new approach has practical use in finding and removing root causes of the delay, as well as clarifying the attribution of responsibility that causes the delay.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference65 articles.

1. Causes of delay in building construction projects in Egypt;Journal of Construction Engineering and Management,2008

2. The effects of construction delays on project delivery in Nigerian construction industry;International Journal of Project Management,2002

3. Construction delays and their causative factors in Nigeria;Journal of Construction Engineering and Management,2006

4. Risk analysis and management in construction;International Journal of Project Management,1997

5. A fuzzy logic approach to model delays in construction projects using rotational fuzzy fault tree models;Civil Engineering and Environmental Systems,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3