A system dynamic approach for simulation of a knowledge transfer model of heterogeneous senders in mega project innovation

Author:

Liu HuiminORCID,Yu Yanru,Sun Yuxing,Yan Xue

Abstract

PurposeThe owners of mega projects typically assemble multiple academic research units and enterprises to form an innovation alliance, which carries out knowledge transfer and knowledge creation targeting technical challenges in the process of engineering construction. Due to high technical and management complexity of mega projects, factors affecting knowledge transfer among innovation subjects are complex and diverse. This study proposes a mixed system dynamics (SD) method to build and simulate the process of knowledge transfer in mega projects innovation and analyzes the driving mechanism that enhances knowledge stock of enterprises and engineering innovation results.Design/methodology/approachFirst, this paper proposes a conceptual model for knowledge transfer in mega projects by adopting event analysis of the data gained from investigations and interviews. Then, a qualitative model of knowledge transfer that considers mutual influences of the owner, academic research unit and enterprises is developed. Based on that, mathematical relationship among variables of the qualitative model is determined and a quantitative model of knowledge transfer that considers heterogeneity of knowledge sender is built. Finally, simulation is achieved using Vensim software.FindingsThe factors affecting knowledge stock of enterprises are analyzed from three aspects: (1) the individual motives and capability of academic research units and enterprises; (2) the gap between academic research units and enterprises; (3) the heterogeneity of academic research units. The results show that the willingness and capability of knowledge reception by enterprises, specific knowledge transfer context such as relational distance and organization distance between academic research units and enterprises and academic research units with high knowledge stock have key influences on the knowledge stock of enterprises.Research limitations/implicationsFactors affecting knowledge transfer within the alliance of innovation in mega projects and their correlations are highly complicated and difficult to determine. Despite massive investigations and interviews on many long-span bridges in China in this study, it is barely possible to directly obtain accurate data for all variables in the model. Limitations of historical data result in limitations on applications of the proposed model.Practical implicationsBy building the mega projects knowledge transfer model and conducting simulation analysis, this paper has generated practical values for the owners of mega projects on fostering, organizing, coordinating and managing of innovations. Especially, this study provides specific strategies and suggestions on selection of innovation subjects, motivation and guaranteed efficiency of knowledge transfer and knowledge creation of academic research units and enterprises.Originality/valueThis study proposes a conceptual model for factors affecting knowledge transfer that applies to innovations in mega project context, which fills the gap in the research of knowledge management in mega project innovations. Additionally, combining with the method of SD, the unique role of owner in knowledge transfer of mega projects and the differences among various knowledge senders and their influences on knowledge stocks of enterprises are thoroughly considered, and the research method of modeling and simulation of knowledge transfer mechanism is supplemented and extended.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3