Effect of energy input on the UHMWPE fabricating process by selective laser sintering

Author:

Song Changhui,Huang Aibing,Yang Yongqiang,Xiao Zefeng,Yu Jia-kuo

Abstract

Purpose This study aims to achieve customized prosthesis for total joint arthroplasty and total hip arthroplasty. Selective laser sintering (SLS) as additive manufacturing could enable small-scale fabrication of customized Ultra High Molecular Weight Polyethylene (UHMWPE) components; however, the processes for SLS of UHMWPE need to be improved. Design/methodology/approach This paper begins by improving the preheating system of the SLS fabricating equipment and then fabricating cuboids with the same size and cuboids with same volume and different size to study the warpage, demonstrating the effect of the value and uniformity of the preheating temperature on component fabrication. Warpage, density and tensile properties are investigated from the perspective of energy input density. Finally, complicated industrial parts are produced effectively by using optimized technological parameters. Findings The results show that components can be fabricated effectively after the optimization of the SLS technological parameters i.e. the preheating temperature the laser power the scanning interval and the scanning speed. The resulting warpage was found to be less than 0.1 mm along with the density as 83.25 and the tensile strength up to 14.1 Mpa. UHMWPE sample parts with good appearance and strength are obtained after ascertaining the effect of each factor on the fabrication of the sample parts. Originality/value It is very challenging to fabricate UHMWPE sample parts by SLS. This is a new step in the fabrication of customized UHMWPE sample parts.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3