Selective laser sintering of an amorphous polymer—simulations and experiments

Author:

Childs T H C1,Berzins M1,Ryder G R1,Tontowi A1

Affiliation:

1. The University of Leeds Departments of Mechanical Engineering and Computer Studies UK

Abstract

Thermal and powder densification modelling of the selective laser sintering of amorphous polycarbonate is reported. Three strategies have been investigated: analytical, adaptive mesh finite difference and fixed mesh finite element. A comparison between the three and experimental results is used to evaluate their ability reliably to predict the behaviour of the physical process. The finite difference and finite element approaches are the only ones that automatically deal with the non-linearities of the physical process that arise from the variation in the thermal properties of the polymer with density during sintering, but the analytical model has some value, provided appropriate mean values are used for thermal properties. Analysis shows that the densification and linear accuracies due to sintering are most sensitive to changes in the activation energy and heat capacity of the polymer, with a second level of sensitivities that includes powder bed density and powder layer thickness. Simulations of the manufacture of hollow cylinders and T-pieces show feature distortions due to excessive depth of sintering at downward facing surfaces in the powder bed. In addition to supporting the modelling, the experiments draw attention to the importance of sintering machine hardware and software controls.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference13 articles.

1. Material Incress Manufacturing by Rapid Prototyping Techniques

2. Linear and Geometric Accuracies from Layer Manufacturing

3. Childs T. H. C., Cardie S., Brown J. M. Selective laser sintering of polycarbonate at varying powers, scan speeds and scan spacings. In Proceedings of 5th Solid Freeform Fabrication Symposium (Eds Marcus H. L. ), Austin, Texas, 1994, pp. 356–363 (University of Texas at Austin, Austin).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3