A stacked ensemble learning method for customer lifetime value prediction

Author:

Asadi Ejgerdi NaderORCID,Kazerooni MehrdadORCID

Abstract

PurposeWith the growth of organizations and businesses, customer acquisition and retention processes have become more complex in the long run. That is why customer lifetime value (CLV) has become crucial to sales managers. Predicting the CLV is a strategic weapon and competitive advantage in increasing profitability and identifying customers with more splendid profitability and is one of the essential key performance indicators (KPI) used in customer segmentation. Thus, this paper proposes a stacked ensemble learning method, a combination of multiple machine learning methods, for CLV prediction.Design/methodology/approachIn order to utilize customers’ behavioral features for predicting the value of each customer’s CLV, the data of a textile sales company was used as a case study. The proposed stacked ensemble learning method is compared with several popular predictive methods named deep neural networks, bagging support vector regression, light gradient boosting machine, random forest and extreme gradient boosting.FindingsEmpirical results indicate that the regression performance of the stacked ensemble learning method outperformed other methods in terms of normalized rooted mean squared error, normalized mean absolute error and coefficient of determination, at 0.248, 0.364 and 0.848, respectively. In addition, the prediction capability of the proposed method improved significantly after optimizing its hyperparameters.Originality/valueThis paper proposes a stacked ensemble learning method as a new method for accurate CLV prediction. The results and comparisons support the robustness and efficiency of the proposed method for CLV prediction.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Customer Lifetime Value Prediction: An In-Depth Exploration with Regression, Regularization and Hyperparameter Tuning;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3