Prediction and improvement of iron casting quality through analytics and Six Sigma approach

Author:

Mishra Nandkumar,Rane Santosh B.

Abstract

Purpose The purpose of this technical paper is to explore the application of analytics and Six Sigma in the manufacturing processes for iron foundries. This study aims to establish a causal relationship between chemical composition and the quality of the iron casting to achieve the global benchmark quality level. Design/methodology/approach The case study-based exploratory research design is used in this study. The problem discovery is done through the literature survey and Delphi method-based expert opinions. The prediction model is built and deployed in 11 cases to validate the research hypothesis. The analytics helps in achieving the statistically significant business goals. The design includes Six Sigma DMAIC (Define – Measure – Analyze – Improve and Control) approach, benchmarking, historical data analysis, literature survey and experiments for the data collection. The data analysis is done through stratification and process capability analysis. The logistic regression-based analytics helps in prediction model building and simulations. Findings The application of prediction model helped in quick root cause analysis and reduction of rejection by over 99 per cent saving over INR6.6m per year. This has also enhanced the reliability of the production line and supply chain with on-time delivery of 99.78 per cent, which earlier was 80 per cent. The analytics with Six Sigma DMAIC approach can quickly and easily be applied in manufacturing domain as well. Research limitations implications The limitation of the present analytics model is that it provides the point estimates. The model can further be enhanced incorporating range estimates through Monte Carlo simulation. Practical implications The increasing use of prediction model in the near future is likely to enhance predictability and efficiencies of the various manufacturing process with sensors and Internet of Things. Originality/value The researchers have used design of experiments, artificial neural network and the technical simulations to optimise either chemical composition or mould properties or melt shop parameters. However, this work is based on comprehensive historical data-based analytics. It considers multiple human and temporal factors, sand and mould properties and melt shop parameters along with their relative weight, which is unique. The prediction model is useful to the practitioners for parameter simulation and quality enhancements. The researchers can use similar analytics models with structured Six Sigma DMAIC approach in other manufacturing processes for the simulation and optimisations.

Publisher

Emerald

Reference55 articles.

1. Quality casting of motor body using design of experiment and casting simulation;International Journal of Manufacturing Research,2016

2. Operating room adjusted utilization study;International Journal of Lean Six Sigma,2015

3. Auschitzky, E., Hammer, M. and Rajagopaul, A. (2014), “How big data can improve manufacturing”, available at: www.mckinsey.com/business-functions/operations/our-insights/how-big-data-can-improve-manufacturing (accessed 18 December 2016).

4. Application of Lean approach for reducing weld defects in a valve component: a case study,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3