Capability Indices for Digitized Industries: A Review and Outlook of Machine Learning Applications for Predictive Process Control

Author:

Mayer Jan1ORCID,Jochem Roland1

Affiliation:

1. Faculty of Mechanical Engineering and Transport Systems, Technische Universität Berlin, Pascsalstr. 8-9, 10587 Berlin, Germany

Abstract

Leveraging machine learning applications for predictive process control signifies a decisive advancement in manufacturing quality management, transitioning from traditional descriptive to predictive capability indices. This review highlights the growing importance of predictive process control, essential for quality assurance and the dynamic adaptability of production lines, which is paramount in satisfying stringent quality standards and evolving consumer demands. The investigation into the integration of comprehensive sensor networks and sophisticated algorithmic analytics enriches continuous improvement strategies, markedly enhancing the accuracy and efficiency of production quality monitoring and control mechanisms. By moving beyond the limits of statistical process control to predictive methods enabled by machine learning algorithms, the study presents a transformative leap in manufacturing processes. The presented findings illustrate the critical role of predictive algorithms in navigating the complexities of process variability, thereby ensuring consistent adherence to established quality specifications. This approach not only facilitates immediate and accurate product quality categorization, increasing overall operational efficiency, but also equips manufacturers to swiftly respond to the variable nature of manufacturing requirements. Furthermore, this research delves into the multifaceted impacts of predictive process control on the manufacturing ecosystem. The ability to predict process quality decrease before it occurs, the optimization of resource allocation, and the anticipation of production bottlenecks before they impact output are among the notable benefits of this technological evolution. These developments to predictive process control is instrumental in propelling the manufacturing industry toward a more agile, sustainable, and customer-centric future. This shift not only complements the industry’s drive toward comprehensive digitization but also promises significant strides in achieving superior process improvements and maintaining a competitive edge on the global market.

Publisher

MDPI AG

Reference74 articles.

1. Lean manufacturing as a vehicle for improving productivity and customer satisfaction: A literature review on metals and engineering industries;Goshime;Int. J. Lean Six Sigma,2019

2. Process capability indices;Kane;J. Qual. Technol.,1986

3. Statistical process control for multistage manufacturing and service operations: A review and some extensions;Tsung;Int. J. Serv. Oper. Inform.,2008

4. The quality management ecosystem for predictive maintenance in the Industry 4.0 era;Lee;Int. J. Qual. Innov.,2019

5. Real-time information capturing and integration framework of the internet of manufacturing things;Zhang;Int. J. Comput. Integr. Manuf.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3