Abstract
PurposeAutomated dust monitoring in workplaces helps provide timely alerts to over-exposed workers and effective mitigation measures for proactive dust control. However, the cluttered nature of construction sites poses a practical challenge to obtain enough high-quality images in the real world. The study aims to establish a framework that overcomes the challenges of lacking sufficient imagery data (“data-hungry problem”) for training computer vision algorithms to monitor construction dust.Design/methodology/approachThis study develops a synthetic image generation method that incorporates virtual environments of construction dust for producing training samples. Three state-of-the-art object detection algorithms, including Faster-RCNN, you only look once (YOLO) and single shot detection (SSD), are trained using solely synthetic images. Finally, this research provides a comparative analysis of object detection algorithms for real-world dust monitoring regarding the accuracy and computational efficiency.FindingsThis study creates a construction dust emission (CDE) dataset consisting of 3,860 synthetic dust images as the training dataset and 1,015 real-world images as the testing dataset. The YOLO-v3 model achieves the best performance with a 0.93 F1 score and 31.44 fps among all three object detection models. The experimental results indicate that training dust detection algorithms with only synthetic images can achieve acceptable performance on real-world images.Originality/valueThis study provides insights into two questions: (1) how synthetic images could help train dust detection models to overcome data-hungry problems and (2) how well state-of-the-art deep learning algorithms can detect nonrigid construction dust.
Subject
Management, Monitoring, Policy and Law,Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Human Factors and Ergonomics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献