Taylor series expansion for evaluating the bounds of electric potentials in an electrostatic system with interval parameters

Author:

Wang Pengbo,Wang Jingxuan

Abstract

PurposeUncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower bounds of the response of a system including uncertain parameters is of immense significance in uncertainty analysis. This paper aims to evaluate the upper and lower bounds of electric potentials in an electrostatic system efficiently with interval parameters. Design/methodology/approachThe Taylor series expansion is proposed for evaluating the upper and lower bounds of electric potentials in an electrostatic system with interval parameters. The uncertain parameters of the electrostatic system are represented by interval notations. By performing Taylor series expansion on the electric potentials obtained using the equilibrium governing equation and by using the properties of interval mathematics, the upper and lower bounds of the electric potentials of an electrostatic system can be calculated. FindingsTo evaluate the accuracy and efficiency of the proposed method, the upper and lower bounds of the electric potentials and the computation time of the proposed method are compared with those obtained using the Monte Carlo simulation, which is referred to as a reference solution. Numerical examples illustrate that the bounds of electric potentials of this method are consistent with those obtained using the Monte Carlo simulation. Moreover, the proposed method is significantly more time-saving. Originality/valueThis paper provides a rapid computational method to estimate the upper and lower bounds of electric potentials in electrostatics analysis with interval parameters. The precision of the proposed method is acceptable for engineering applications, and the computation time of the proposed method is significantly less than that of the Monte Carlo simulation, which is the most widely used method related to uncertainties. The Monte Carlo simulation requires a large number of samplings, and this leads to significant runtime consumption.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference32 articles.

1. Box particle filtering for nonlinear state estimation using interval analysis;Automatica,2008

2. A stochastic lagrangian approach for geometrical uncertainties in electrostatics;Journal of Computational Physics,2007

3. Charge iteration: a procedure for the finite element computation of unbounded electrical fields;International Journal for Numerical Methods in Engineering,2010

4. Interval arithmetic yields efficient dynamic filters for computational geometry;Discrete Applied Mathematics,2008

5. An interval analysis based study for the design and the comparison of three-degrees-of-freedom parallel kinematic machines;International Journal of Robotics Research,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3