Analysis of the convergence of Newton method by finite element simulation with vector hysteresis stop model

Author:

Xiao Xiao,Müller Fabian,Nell Martin Marco,Hameyer Kay

Abstract

Purpose The goal of this research is to investigate the convergence behavior of the Newton iteration, when solving the nonlinear problem with consideration of hysteresis effects. Incorporating the vector hysteresis model in the magnetic vector potential formulation has encountered difficulties. One of the reasons is that the Newton method is very sensitive regarding the starting point and states distinct requirements for the nonlinear function in terms of monotony and smoothness. The other reason is that the differential reluctivity tensor of the material model is discontinuous due to the properties of the stop operators. In this work, line search methods to overcome these difficulties are discussed. Design/methodology/approach To stabilize the Newton iteration, line search methods are studied. The first method computes an error-oriented search direction. The second method is based on the Wolfe-Powell rule using the Armijo condition and curvature condition. Findings In this paper, the differentiation of the vector stop model, used to evaluate the Jacobian matrix, is studied. Different methods are applied for this nonlinear problem to ensure reliable and stable finite element simulations with consideration of vector hysteresis effects. Originality/value In this paper, two different line search Newton methods are applied to solve the magnetic field problems with consideration of vector hysteresis effects and ensure a stable convergence successfully. A comparison of these two methods in terms of robustness and efficiency is presented.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3