Author:
Chen Gonggui,Liu Lilan,Guo Yanyan,Huang Shanwai
Abstract
Purpose
– For one thing, despite the fact that it is popular to research the minimization of the power losses in power systems, the optimization of single objective seems insufficient to fully improve the performance of power systems. Multi-objective VAR Dispatch (MVARD) generally minimizes two objectives simultaneously: power losses and voltage deviation. The purpose of this paper is to propose Multi-Objective Enhanced PSO (MOEPSO) algorithm that achieves a good performance when applied to solve MVARD problem. Thus, the new algorithm is worthwhile to be known by the public.
Design/methodology/approach
– Motivated by differential evolution algorithm, cross-over operator is introduced to increase particle diversity and reinforce global searching capacity in conventional PSO. In addition to that, a constraint-handling approach considering Constrain-prior Pareto-Dominance (CPD) is presented to handle the inequality constraints on dependent variables. Constrain-prior Nondominated Sorting (CNS) and crowding distance methods are considered to maintain well-distributed Pareto optimal solutions. The method combining CPD approach, CNS technique, and cross-over operator is called the MOEPSO method.
Findings
– The IEEE 30 node and IEEE 57 node on power systems have been used to examine and test the presented method. The simulation results show the MOEPSO method can achieve lower power losses, smaller voltage deviation, and better-distributed Pareto optimal solutions comparing with the Multi-Objective PSO approach.
Originality/value
– The most original parts include: the presented MOEPSO algorithm, the CPD approach that is used to handle constraints on dependent variables, and the CNS method which is considered to maintain a well-distributed Pareto optimal solutions. The performance of the proposed algorithm successfully reflects the value of this paper.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献