Evaluation of vehicle lightweighting to reduce greenhouse gas emissions with focus on magnesium substitution

Author:

Kulkarni Siddharth,Edwards David John,Parn Erika Anneli,Chapman Craig,Aigbavboa Clinton Ohis,Cornish Richard

Abstract

Purpose Vehicle weight reduction represents a viable means of meeting tougher regulatory requirements designed to reduce fuel consumption and control greenhouse gas emissions. This paper aims to present an empirical and comparative analysis of lightweight magnesium materials used to replace conventional steel in passenger vehicles with internal combustion engines. The very low density of magnesium makes it a viable material for lightweighting given that it is lighter than aluminium by one-third and steel by three-fourth. Design/methodology/approach A structural evaluation case study of the “open access” Wikispeed car was undertaken. This included an assessment of material design characteristics such as bending stiffness, torsional stiffness and crashworthiness to evaluate whether magnesium provides a better alternative to the current usage of aluminium in the automotive industry. Findings The Wikispeed car had an issue with the rocker beam width/thickness (b/t) ratio, indicating failure in yield instead of buckling. By changing the specified material, Aluminium Alloy 6061-T651 to Magnesium EN-MB10020, it was revealed that vehicle mass could be reduced by an estimated 110 kg, in turn improving the fuel economy by 10 per cent. This, however, would require mechanical performance compromise unless the current design is modified. Originality/value This is the first time that a comparative analysis of material substitution has been made on the Wikispeed car. The results of such work will assist in the lowering of harmful greenhouse gas emissions and simultaneously augment fuel economy.

Publisher

Emerald

Subject

General Engineering

Reference74 articles.

1. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing;Business Horizons,2017

2. Bach, E.W., Rompage, A.J. and Matsuura, H. (2017), “Front Pillar for a Vehicle Body”, Honda Motor Company, Minato, Tokyo, 2017. US Patent: 9,598,112.

3. Numerical analysis of a rotor disc for optimization of the disc materials;Journal of Mechanical Engineering and Automation,2015

4. Tribology of aluminum and aluminum matrix composite materials for automotive components,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3