Existing plagiarism detection techniques

Author:

Eisa Taiseer Abdalla Elfadil,Salim Naomie,Alzahrani Salha

Abstract

Purpose – The purpose of this paper is to analyse the state-of-the-art techniques used to detect plagiarism in terms of their limitations, features, taxonomies and processes. Design/methodology/approach – The method used to execute this study consisted of a comprehensive search for relevant literature via six online database repositories namely; IEEE xplore, ACM Digital Library, ScienceDirect, EI Compendex, Web of Science and Springer using search strings obtained from the subject of discussion. Findings – The findings revealed that existing plagiarism detection techniques require further enhancements as existing techniques are incapable of efficiently detecting plagiarised ideas, figures, tables, formulas and scanned documents. Originality/value – The contribution of this study lies in its ability to have exposed the current trends in plagiarism detection researches and identify areas where further improvements are required so as to complement the performances of existing techniques.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference52 articles.

1. Achimugu, P. , Selamat, A. , Ibrahim, R. and Mahrin, M.N.R. (2014), “A systematic literature review of software requirements prioritization research”, Information and Software Technology , Vol. 56 No. 6, pp. 568-585.

2. Adam, A.R. (2014), “Plagiarism detection algorithm using natural language processing based on grammar analyzing”, Journal of Theoretical & Applied Information Technology , Vol. 63 No. 1, pp. 168-180.

3. Agarwal, J. , Goudar, R.H. , Kumar, P. , Sharma, N. , Parshav, V. , Sharma, R. , Srivastava, A. and Rao, S. (2013), “Intelligent plagiarism detection mechanism using semantic technology: a different approach”, International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, Los Alamitos, CA, 22-25 August, pp. 779-783.

4. Aimmanee, P. (2011), “Automatic plagiarism detection using word-sentence based s-gram”, Journal of Science , Vol. 38, Special Issue, pp. 1-7.

5. Alzahrani, S. and Salim, N. (2010), “Fuzzy semantic-based string similarity for extrinsic plagiarism detection”, in Braschler, M. , Harman, D. and Pianta, E. (Eds), Lab Report for PAN at CLEF, 22-23 September , Vol. 1176, Padua, CEUR-WS.org.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plagiarism among accounting and business postgraduate students: a fraud diamond framework moderated by understanding of artificial intelligence;Cogent Education;2024-07-15

2. Conclusion: Future Directions for the UO Pedagogy;Understanding-Oriented Pedagogy to Strengthen Plagiarism-Free Academic Writing;2024

3. Invigorating the UO Pedagogy Through Practice;Understanding-Oriented Pedagogy to Strengthen Plagiarism-Free Academic Writing;2024

4. Exploring the Landscape of Intrinsic Plagiarism Detection: Benchmarks, Techniques, Evolution, and Challenges;IEEE Access;2023

5. Plagiarism Detection and Intertextuality Software;Digital Writing Technologies in Higher Education;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3