A dependency-based machine learning approach to the identification of research topics: a case in COVID-19 studies

Author:

Zhu HaoranORCID,Lei LeiORCID

Abstract

PurposePrevious research concerning automatic extraction of research topics mostly used rule-based or topic modeling methods, which were challenged due to the limited rules, the interpretability issue and the heavy dependence on human judgment. This study aims to address these issues with the proposal of a new method that integrates machine learning models with linguistic features for the identification of research topics.Design/methodology/approachFirst, dependency relations were used to extract noun phrases from research article texts. Second, the extracted noun phrases were classified into topics and non-topics via machine learning models and linguistic and bibliometric features. Lastly, a trend analysis was performed to identify hot research topics, i.e. topics with increasing popularity.FindingsThe new method was experimented on a large dataset of COVID-19 research articles and achieved satisfactory results in terms of f-measures, accuracy and AUC values. Hot topics of COVID-19 research were also detected based on the classification results.Originality/valueThis study demonstrates that information retrieval methods can help researchers gain a better understanding of the latest trends in both COVID-19 and other research areas. The findings are significant to both researchers and policymakers.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference46 articles.

1. Machine Learning for Text

2. A polynomial goal programming model for portfolio optimization based on entropy and higher moments;Expert Systems with Applications,2018

3. Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management;Spanish Journal of Agricultural Research,2009

4. A comparison between morphological complexity measures: typological data vs Language corpora,2016

5. Setting parameters for support vector machines using transfer learning;Journal of Intelligent and Robotic Systems: Theory and Applications,2015

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3