Abstract
PurposeThe outbreak of COVID-19 has become a major public health emergency worldwide. How to effectively guide public opinion and implement precise prevention and control is a hot topic in current research. Mining the spatiotemporal coupling between online public opinion and offline epidemics can provide decision support for the precise management and control of future emergencies.Design/methodology/approachThis study focuses on analyzing the spatiotemporal coupling relationship between public opinion and the epidemic. First, based on Weibo information and confirmed case information, a field framework is constructed using field theory. Second, SnowNLP is used for sentiment mining and LDA is utilized for topic extraction to analyze the topic evolution and the sentiment evolution of public opinion in each coupling stage. Finally, the spatial model is used to explore the coupling relationship between public opinion and the epidemic in space.FindingsThe findings show that there is a certain coupling between online public opinion sentiment and offline epidemics, with a significant coupling relationship in the time dimension, while there is no remarkable coupling relationship in space. In addition, the core topics of public concern are different at different coupling stages.Originality/valueThis study deeply explores the spatiotemporal coupling relationship between online public opinion and offline epidemics, adding a new research perspective to related research. The result can help the government and relevant departments understand the dynamic development of epidemic events and achieve precise control while mastering the dynamics of online public opinion.
Subject
Library and Information Sciences,Information Systems
Reference31 articles.
1. Latent Dirichlet allocation;The Journal of Machine Learning Research,2003
2. Kurt Lewin's field theory: a review and re-evaluation;International Journal of Management Reviews,2013
3. A comparison study of topic modeling based literature analysis by using full texts and abstracts of scientific articles: a case of COVID-19 research;Library Hi Tech,2022
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献