Understanding regional characteristics through crowd preference and confidence mining in P2P accommodation rental service

Author:

Abdar MoloudORCID,Yen Neil Y.

Abstract

Purpose This research intends to look at the regional characteristics through an analysis of crowd preference and confidence, and investigates how regional characteristics are going to affect human beings at all aspects in a scenario of sharing economy. The purpose of this paper is to introduce an approach to provide an understandable rating score. Furthermore, the paper aims to find the relationships between different features classified in this study by using machine learning methods. Furthermore, due to the importance of performance of methods, the performance of the features is also improved. Design/methodology/approach The Rating Matching Rate (RMRate) approach is proposed to provide score in terms of simplicity and understandability for all features. The relationships between features can be extracted from accommodation data set using decision tree (DT) algorithms (J48, HoeffdingTree, and REPTree). Usability of these methods was evaluated using different metrics. Two techniques, “ClassBalancer” and “SpreadSubsample,” are applied to improve the performance of algorithms. Findings Experimental outcomes using the RMRate approach show that the scores are very easy to understand. Three property types are very popular almost in all of selected countries in this study (“apartment”, “house”, and “bed and breakfast”). The findings also indicate that “Entire home/apt” is the most common room-type and 4.5 and 5 star-rating are the most given star-rating by users. The proposed DT algorithms can find the relationships between features significantly. In addition, applied CB and SS techniques could improve the performance of algorithms efficiently. Originality/value This study gives precise details about the guests’ preferences and hosts’ preferences. The proposed techniques can effectively improve the performance in predicting the behavior of users in sharing economy. The findings can also help group decision making in P2P platforms efficiently.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference37 articles.

1. Sharing economy and its effect on human behavior changes in accommodation: a survey on Airbnb;International Journal of Social and Humanistic Computing,2017

2. Design of a universal user model for dynamic crowd preference sensing and decision-making behavior analysis;IEEE Access,2017

3. Understanding the sharing economy: the role of response to negative reviews in the peer-to-peer accommodation sharing network,2015

4. The silent treatment: LGBT discrimination in the sharing economy,2017

5. An empirical study of the web presence model to evaluate the web features of small-and-medium-sized hotels (SMHs) in the Malaysian hotel industry,2017

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3