Epilepsy attacks recognition based on 1D octal pattern, wavelet transform and EEG signals

Author:

Tuncer Türker,Dogan Sengul,Naik Ganesh R.,Pławiak PawełORCID

Abstract

AbstractElectroencephalogram (EEG) signals have been generally utilized for diagnostic systems. Nowadays artificial intelligence-based systems have been proposed to classify EEG signals to ease diagnosis process. However, machine learning models have generally been used deep learning based classification model to reach high classification accuracies. This work focuses classification epilepsy attacks using EEG signals with a lightweight and simple classification model. Hence, an automated EEG classification model is presented. The used phases of the presented automated EEG classification model are (i) multileveled feature generation using one-dimensional (1D) octal-pattern (OP) and discrete wavelet transform (DWT). Here, main feature generation function is the presented octal-pattern. DWT is employed for level creation. By employing DWT frequency coefficients of the EEG signal is obtained and octal-pattern generates texture features from raw EEG signal and wavelet coefficients. This DWT and octal-pattern based feature generator extracts 128 × 8 = 1024 (Octal-pattern generates 128 features from a signal, 8 signal are used in the feature generation 1 raw EEG and 7 wavelet low-pass filter coefficients). (ii) To select the most useful features, neighborhood component analysis (NCA) is deployed and 128 features are selected. (iii) The selected features are feed to k nearest neighborhood classifier. To test this model, an epilepsy seizure dataset is used and 96.0% accuracy is attained for five categories. The results clearly denoted the success of the presented octal-pattern based epilepsy classification model.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3