Radiative hybrid nanofluid flow past a rotating permeable stretching/shrinking sheet

Author:

Anuar Nur Syazana,Bachok Norfifah,Pop Ioan

Abstract

Purpose This paper aims to discuss a stability analysis on Cu-Al2O3/water nanofluid having a radiation and suction impacts over a rotating stretching/shrinking sheet. Design/methodology/approach The partial differential equations are converted into nonlinear ordinary differential equations using similarity transformation and then being solved numerically using built in function in Matlab software (bvp4c). The effects of pertinent parameters on the temperature and velocity profiles together with local Nusselt number and skin friction are reported. Findings Compared to previously published studies, the current work is noticed to be in good deal. The analysis further shows that the non-unique solutions exist for certain shrinking parameter values. Hence, a stability analysis is executed using a linear temporal stability analysis and concluded that the second solution is unstable, while the first solution is stable. The effect of suction parameter is observed to be significant in obtaining the solutions. The improvement of the local skin friction and the decrease of the local Nusselt number on the shrinking surface are observed with the increment of the copper nanoparticle volume fractions. Originality/value The originality of current work is the numerical solutions and stability analysis of hybrid nanofluid in rotating flow. This work has also resulted in producing the non-unique solutions for the shrinking sheet, and a stability analysis has also been executed for this flow showing that the second solution is unstable, while the first solution is stable. This paper is therefore valuable for engineers and scientist to get acquainted with the properties of the flow, its behavior and the way to predict it. The authors admit that all the findings are original and were not published anywhere else.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference49 articles.

1. MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition;International Journal of Numerical Methods for Heat and Fluid Flow,2019

2. Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis;CFD Letters,2019

3. Stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in hybrid nanofluid with slip velocity effect: stability analysis;Journal of Physics: Conference Series,2019

4. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk;Results in Physics,2018

5. State-of-art review on hybrid nanofluids;Renewable and Sustainable Energy Reviews,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3