Investigation on fatigue behavior of single SnAgCu/SnPb solder joint by rapid thermal cycling

Author:

Chen Jibing,Yin Yanfang,Ye Jianping,Wu Yiping

Abstract

Purpose – The purpose of this paper is to investigate the thermal fatigue behavior of a single Sn-3.0Ag-0.5Cu (SAC) lead-free and 63Sn-37Pb (SnPb) solder joint treated by rapidly alternating heating and cooling cycles. Design/methodology/approach – With the application of electromagnetic-induced heating, the specimen was heated and cooled, controlled with a system that uses a fuzzy logic algorithm. The microstructure and morphology of the interface between the solder ball and Cu substrate was observed using scanning electron microscopy. The intermetallic compounds and the solder bump surface were analyzed by energy-dispersive X-ray spectroscopy and X-ray diffraction, respectively. Findings – The experimental results showed that rapid thermal cycling had an evident influence on the surface and interfacial microstructure of a single solder joint. The experiment revealed that microcracks originate and propagate on the superficial oxide of the solder bump after rapid thermal cycling. Originality/value – Analysis, based on finite element modeling and metal thermal fatigue mechanism, determined that the rimous cracks can be explained by the heat deformation theory and the function of temperature distribution in materials physics.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3