Author:
Chen Yinan,Huo Dehong,Wang Guorong,Zhong Lin,Gong Zheng
Abstract
Purpose
This paper aims to combine the grooves with an annular air thrust bearing with multi-hole restrictors and discusses the influence of the groove parameters on the bearing performance.
Design/methodology/approach
Four models of aerostatic bearings with grooves of different geometries are established. The pressure distribution, load-carrying capacity (LCC), stiffness and flow characteristics of the flow field in the bearing clearances are obtained by computational fluid dynamics simulation.
Findings
The numerical and simulation results show that air bearing with grooved restrictors can slow down the pressure drop at the air inlet and increase the LCC and stiffness of the bearing. The gas flow in the aerostatic bearing is also studied, and the air vortex in the recess is analyzed.
Originality/value
This research optimizes the structure of the annular air thrust bearing, analyzes the gas vortex in the recess, improves the LCC and stiffness of the bearing and provides a reference for the bearing in the selection of groove parameters.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0006/
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering