The problems of resistance to scuffing of heavily loaded lubricated friction joints with WC/C-coated parts

Author:

Michalczewski Remigiusz,Piekoszewski Witold,Tuszynski Waldemar,Szczerek Marian

Abstract

Purpose – The purpose of this paper was to explore the mechanisms of scuffing propagation of heavily loaded lubricated friction pair elements coated with low-friction WC/C coating for various material combinations. Design/methodology/approach – The investigations were performed for low-friction coatings WC/C (a-C:H:W) deposited by the reactive sputtering physical vapour deposition (PVD) process. Experiments were carried out using a four-ball tester with continuously increasing loads. Tests were conducted for the following four material combinations: steel/steel tribosystem (all balls uncoated); steel/coating tribosystem (one upper ball uncoated/three lower balls WC/C-coated); coating/steel tribosystem (one upper ball WC/C-coated/three lower balls uncoated); and coating/coating tribosystem (all balls WC/C-coated). Findings – The better scuffing resistance is achieved by coating only one element (coating/steel tribosystem) than all elements (coating/coating tribosystem). The description of scuffing propagation for all investigated tribosystems was done. The high scuffing resistance of the coating/steel tribosystem resulted from reducing the adhesion between rubbing surfaces due to low chemical affinity (similarities) between the steel and the coating material and the presence of solid lubricant in the friction zone. Practical implications – In all cases, when a coating is applied, an increase in scuffing resistance is observed. However, it is better to coat only one element than all. Furthermore, the scuffing resistance for the coating/steel tribosystem is significantly higher than for the steel/coating tribosystem. Originality/value – The main value of this paper is description of scuffing propagation and revealing the new aspects in application of low-friction WC/C coating for heavily loaded lubricated friction pair elements. The overlapping ratio has been defined as an important factor influencing the scuffing resistance of the coated tribosystems.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3