Characterization and properties of low-friction, multilayered Cr-doped diamond-like carbon coatings prepared by pulse biased filtered cathodic arc deposition

Author:

Bujak J1,Michalczewski R1

Affiliation:

1. Institute for Sustainable Technologies National Research Institute, Radom, Poland

Abstract

The aim of the article was to investigate the effect of pulsed high-voltage bias on phase composition, surface morphology, mechanical properties, and the tribological performance of the multilayered Cr/CrN/DLC coatings prepared by the filtered cathodic arc deposition (FCAD) process. The coatings were deposited using a laboratory arc source device equipped with two macroparticle filtering systems. All coatings were deposited at substrate temperatures below 200°C. Cr/CrN/DLC multilayered coatings were analysed using X-ray photoelectron spectroscopy, a glow discharge optical emission spectrometry technique, scratch testing, nano-indentation measurements (nano-hardness and Young's modulus), and optical microscopy. Tribological tests employing a ball-on-disc tribosystem were performed in dry friction conditions in an air-conditioned room (RH 50 per cent, 23°C). The results proved that the substrate bias voltage exerts a significant influence on the mechanical properties of the Cr/CrN/DLC multilayered coatings by the changing chemical composition of the DLC top layers. With an increase of bias voltage from 2 to 6 kV, the Cr content increases from 2 to 4 per cent and the sp2/sp3 ratio decreases from 1.06 to 0.44. The Cr-doped DLC multilayered coatings were characterized by a very smooth surface, a low friction coefficient (0.13–0.15), moderate hardness (8–11 GPa), and a Young's modulus of 95–130 GPa. Due to the moderate adhesion strength of DLC top layers, their wear resistance was not satisfactory for real applications. In each tribological test, the delaminating process of the DLC layers was observed after approximately 200–300 load cycles. To improve the mechanical properties and adhesion of a DLC layer, the optimization of the transition and DLC layers is achieved by changing the parameters of the physical vapour deposition process.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3