Smooth estimation of human foot motion for zero-velocity-update-aided inertial pedestrian navigation system

Author:

Zhao Hongyu,Wang Zhelong,Gao Qin,Hassan Mohammad Mehedi,Alelaiwi Abdulhameed

Abstract

Purpose – The purpose of this paper is to develop an online smoothing zero-velocity-update (ZUPT) method that helps achieve smooth estimation of human foot motion for the ZUPT-aided inertial pedestrian navigation system. Design/methodology/approach – The smoothing ZUPT is based on a Rauch–Tung–Striebel (RTS) smoother, using a six-state Kalman filter (KF) as the forward filter. The KF acts as an indirect filter, which allows the sensor measurement error and position error to be excluded from the error state vector, so as to reduce the modeling error and computational cost. A threshold-based strategy is exploited to verify the detected ZUPT periods, with the threshold parameter determined by a clustering algorithm. A quantitative index is proposed to give a smoothness estimate of the position data. Findings – Experimental results show that the proposed method can improve the smoothness, robustness, efficiency and accuracy of pedestrian navigation. Research limitations/implications – Because of the chosen smoothing algorithm, a delay no longer than one gait cycle is introduced. Therefore, the proposed method is suitable for applications with soft real-time constraints. Practical implications – The paper includes implications for the smooth estimation of most types of pedal locomotion that are achieved by legged motion, by using a sole foot-mounted commercial-grade inertial sensor. Originality/value – This paper helps realize smooth transitions between swing and stance phases, helps enable continuous correction of navigation errors during the whole gait cycle, helps achieve robust detection of gait phases and, more importantly, requires lower computational cost.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3