Abstract
PurposeCurrently, countries worldwide are struggling with the virus COVID-19 and the severe outbreak it brings. To better benefit from open government health data in the fight against this pandemic, this study developed a framework for assessing open government health data at the dataset level, providing a tool to evaluate current open government health data's quality and usability COVID-19.Design/methodology/approachBased on the review of the existing quality evaluation methods of open government data, the evaluation metrics and their weights were determined by 15 experts in health through the Delphi method and analytic hierarchy process. The authors tested the framework's applicability using open government health data related to COVID-19 in the US, EU and China.FindingsThe results of the test capture the quality difference of the current open government health data. At present, the open government health data in the US, EU and China lacks the necessary metadata. Besides, the number, richness of content and timeliness of open datasets need to be improved.Originality/valueUnlike the existing open government data quality measurement, this study proposes a more targeted open government data quality evaluation framework that measures open government health data quality on a range of data quality dimensions with a fine-grained measurement approach. This provides a tool for accurate assessment of public health data for correct decision-making and assessment during a pandemic.
Subject
Library and Information Sciences,Information Systems
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献