Developing a big data analytics platform using Apache Hadoop Ecosystem for delivering big data services in libraries

Author:

Singh Ranjeet Kumar

Abstract

Purpose Although the challenges associated with big data are increasing, the question of the most suitable big data analytics (BDA) platform in libraries is always significant. The purpose of this study is to propose a solution to this problem. Design/methodology/approach The current study identifies relevant literature and provides a review of big data adoption in libraries. It also presents a step-by-step guide for the development of a BDA platform using the Apache Hadoop Ecosystem. To test the system, an analysis of library big data using Apache Pig, which is a tool from the Apache Hadoop Ecosystem, was performed. It establishes the effectiveness of Apache Hadoop Ecosystem as a powerful BDA solution in libraries. Findings It can be inferred from the literature that libraries and librarians have not taken the possibility of big data services in libraries very seriously. Also, the literature suggests that there is no significant effort made to establish any BDA architecture in libraries. This study establishes the Apache Hadoop Ecosystem as a possible solution for delivering BDA services in libraries. Research limitations/implications The present work suggests adapting the idea of providing various big data services in a library by developing a BDA platform, for instance, providing assistance to the researchers in understanding the big data, cleaning and curation of big data by skilled and experienced data managers and providing the infrastructural support to store, process, manage, analyze and visualize the big data. Practical implications The study concludes that Apache Hadoops’ Hadoop Distributed File System and MapReduce components significantly reduce the complexities of big data storage and processing, respectively, and Apache Pig, using Pig Latin scripting language, is very efficient in processing big data and responding to queries with a quick response time. Originality/value According to the study, there are significantly fewer efforts made to analyze big data from libraries. Furthermore, it has been discovered that acceptance of the Apache Hadoop Ecosystem as a solution to big data problems in libraries are not widely discussed in the literature, although Apache Hadoop is regarded as one of the best frameworks for big data handling.

Publisher

Emerald

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3