Defining big data and measuring its associated trends in the field of information and library management

Author:

Ahmed Waqar,Ameen Kanwal

Abstract

Purpose The purpose of this paper is to define big data and draw its deep understanding. Moreover, trends of big data research in the field of library and information management are explored. With the purpose to explore the research trends, papers indexed in Thomson Reuters’ ISI Web of Knowledge were analyzed. Design/methodology/approach It is a literature-based and scientometric paper. A formal definition is constructed through a review of literature. Moreover, scientometric analysis of papers indexed in Thomson Reuters’ ISI Web of Knowledge has been done to explore the research trends associated with big data in the field of library and information science, using Vosviewer software. Findings The findings of the study indicate the reshaped definition of big data. The findings further indicate major research trends associated with big data. The analysis indicated “Risk”, “Industry”, “Market”, “Creditworthiness” and “Big Data Analytics”, the most repeated research trends associated with big data. Practical implications The paper sums up the learnings required to be a successful data-literate manager. First, the study defines big data. Second, the study describes current research trends associated with big data. Third, on the basis of the explored trends, data managers and library and information management professionals are guided about the learnings they require to be a successful data manager. Where thousands of data-literate managers are predicted to require in future, the present study is a guide to trends associated with big data. Originality/value It is a first study of its type which provides a reshaped definition of big data. It portrays its landscape and associated research trends in the field of information and library management (ILM).

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference24 articles.

1. Smartphones habits, necessities, and big data challenges;The Journal of High Technology Management Research,2015

2. Big data analytics: transforming data to action;Business Process Management Journal,2017

3. Synchronous Big Data analytics for personalized and remote physical therapy;Pervasive and Mobile Computing,2015

4. A formal definition of Big Data based on its essential features;Library Review,2016

5. Donald, L.J. (2013), “The importance of knowing trends in your industry”, Transformation Marketing, available at: http://transformationmarketing.com/the-importance-of-knowing-trends-in-your-industry/ (accessed 28 2017).

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3