Tolerance analysis of assemblies with sculptured components in composites materials: comparison between an analytical method and a simulation approach

Author:

Ascione Rocco,Polini Wilma

Abstract

Purpose The purpose of this paper is to compare two different tools for tolerance analysis. Tolerance analysis is an important task to design and manufacture high-precision mechanical assemblies; it has received considerable attention in the literature. Many are the tools required to carry out a tolerance analysis, and may be divided into two categories: the analytical models and the statistical software packages. No comparison exists in the literature among these two categories. Design/methodology/approach This work presents a comparison between two different approaches to tolerance analysis: an analytical method, the variational model, and a statistical software, eM-Tolmate. The comparison has been developed on the same aeronautical case study that constitutes an actual product. Findings The proposed approach has been applied to an aeronautical case study. The results of the case study show how, when 2D tolerance analysis problems need to be solved, the two adopted tools give the same results. When the complexity of the tolerance analysis problems increases, the statistical software becomes the only choice to use. The new findings of the present paper are related to the fact that computer-aided tolerance analysis software packages remain the only choice to approach actual complex industrial products despite the extensive development of theoretical research. Research limitations/implications This paper deals with a unique case study. However, the two adopted approaches and the obtained results are general, that is, they may be applied to any assembly. Practical implications Tolerance analysis is a valid tool to foresee geometric interferences among the components of an assembly, before getting the physical assembly. It involves a decrease of the manufacturing costs. Originality/value Many are the tools for tolerance analysis, such as different analytical models and different commercial software packages. Some are the comparisons among the different tools in the literature, but they are not exhaustive. Therefore, when a user has to solve an assembly problem to foresee the geometric interferences during the design stage, he/she does not know what to choose. The original contribution of the paper is to address the user’s choice through a comparison between an analytical model and a statistical software to solve the tolerance analysis problems of an actual aeronautical assembly.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference17 articles.

1. From solid modelling to skin model shapes: shifting paradigms in computer-aided tolerancing;CIRP Annals – Manufacturing Technology,2014

2. Critical operating conditions for assemblies with parameter-dependent dimensions;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2013

3. Manufacturing tolerance analysis based on the model of manufactured part and experimental data;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2013

4. A comprehensive system for computer-aided tolerance analysis of 2-D and 3-D mechanical assemblies,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3