An energy-autonomous UAV swarm concept to support sea-rescue and maritime patrol missions in the Mediterranean sea

Author:

Sendner Franz-Michael

Abstract

Purpose For the crews and assets of the European Union’s (EU’s) Joint Operations available today, but a vast area in the Mediterranean Sea to monitor, detection of small boats and rafts in distress can take up to several days or even fail at all. This study aims to outline how an energy-autonomous swarm of Unmanned Aerial System can help to increase the monitored sea area while minimizing human resource demand. Design/methodology/approach A concept for an unattended swarm of solar powered, unmanned hydroplanes is proposed. A swarm operations concept, vehicle conceptual design and an initial vehicle sizing method is derived. A microscopic, multi-agent-based simulation model is developed. System characteristics and surveillance performance is investigated in this delimited environment number of vehicles scale. Parameter variations in insolation, overcast and system design are used to predict system characteristics. The results are finally used for a scale-up study on a macroscopic level. Findings Miniaturization of subsystems is found to be essential for energy balance, whereas power consumption of subsystems is identified to define minimum vehicle size. Seasonal variations of solar insolation are observed to dominate the available energy budget. Thus, swarm density and activity adaption to solar energy supply is found to be a key element to maintain continuous aerial surveillance. Research limitations/implications This research was conducted extra-occupationally. Resources were limited to the available range of literature, computational power number and time budget. Practical implications A proposal for a probable concept of operations, as well as vehicle preliminary design for an unmanned energy-autonomous, multi-vehicle system for maritime surveillance tasks, are presented and discussed. Indications on path planning, communication link and vehicle interaction scheme selection are given. Vehicle design drivers are identified and optimization of parameters with significant impact on the swarm system is shown. Social implications The proposed system can help to accelerate the detection of ships in distress, increasing the effectiveness of life-saving rescue missions. Originality/value For continuous surveillance of expanded mission theatres by small-sized vehicles of limited endurance, a novel, collaborative swarming approach applying in situ resource utilization is explored.

Publisher

Emerald

Subject

Aerospace Engineering

Reference31 articles.

1. Wireless sensor networks: a survey;Computer Networks,2002

2. National search and rescue manual, vol I: National search and rescue system,1991

3. Autonomous marine vehicles in sea surveillance as one of the COMPASS2020 project concerns;Journal of Physics: Conference Series,2019

4. Swarm robotics: a review from the swarm engineering perspective;Swarm Intelligence,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3